xml地图|网站地图|网站标签 [设为首页] [加入收藏]

洞悉物联网发展一千问之到底5G的核心技术在哪里

手机为什么会转「菊花」?

最近围绕着5G做了很多介绍,因为对于公众而言大多都是人士非专业的小白,大家只知道5G很先进,是高科技技术,但是5G到底在哪里体现先进性呢,基本说不出来?换句话,5G的核心技术到底是什么?

在前面的介绍中小编已经说了,这次毫米波5G射频模组中高通采用了多天线阵列,同时,将毫米波天线模组连接到骁龙X50 5G调制解调器上,集成从调制解调器往后的所有射频链路芯片上的功能,包括收发器、射频前端、天线等,十分复杂,对于终端厂商来说,如果采用离散的器件他们可能需要优化上百个不同的器件,况且目前还没有终端厂商具备这种能力,所以高通采用了高度集成的方案,将这些器件都整合在小小的模组里,包括不同天线之间的协同,高通也做到了预先将天线整合好,提前做好天线的调整工作让它们可以相互协同,让它们更容易形成波束,这样,终端厂商在设计终端时就会好操作很多。

毫米波是什么

而 5GHz 的 Wi-Fi 信号穿一堵墙就不行了,但是厉害之处在于速度快,不拥堵。至于 60GHz 的 Wi-Fi 的穿墙能力几乎可以忽略,但真的是网速如刀,快如闪电侠。

奥门银河官方app 1

任何智能手机都离不开射频模组,这是手机通信功能的基础,在5G更是如此,而5G手机射频模组的问世,虽然不能算是5G时代的真正到来,但至少能代表5G时代序幕的拉开。高通推出首款面向智能手机和其他移动终端的全集成5G新空口毫米波及6GHz以下射频模组,其实是对5G智能手机终端的推出起到了极大的推动作用,就像那句成语,“万事俱备,只欠东风”:从调制解调器到射频的解决方案已经有了,移动5G网络和终端,特别是智能手机已经准备就绪,问世已经剩下最后的工作。

QTM525毫米波天线模组的体积控制极佳,搭载该模组的手机,能够将手机的厚度控制在8mm,这个厚度与目前的4G手机相当,能够延续手机设计纤薄特性,它能够让5G手机有着如同4G手机版的精美纤薄设计。

虽然毫米波的研究开始得早,但是一直都在实验室里面呆着,真正的商用到上个世界末才到来,主要用途是 77 GHz 汽车防撞雷达。

毫米波技术有什么缺点?

5G手机的催化剂

奥门银河官方app 2

依据上表,波长在 1 到 10 毫米之间的电磁波,通常对应于 30GHz 至 300GHz 之间的无线电频谱,也就是广义上的毫米波。不过这个定义也不是那么严格,24.25GHz 电磁波的波长是 12.37 毫米,也可以叫它毫米波,虽然它比较像毫米波里面的姚明。

5G 使用毫米波就是通过第二种方法来提升速率。

换句话说,这一套解决方案是5G手机正式问世的必要条件,目前很多手机厂商都已经表示会在明年推出5G智能手机。但普通消费者可能会觉得,印象中5G还是很遥远的事儿,怎么说来就要来了呢?

奥门银河官方app 3

类似的情况就像春节或者国庆假期里,大量车辆在高速公路上出现的几公里的拥堵。平时,高速公路就是高速公路,因为路上的车不太多,在通行能力之内。而到了节日出行高峰期,路上的车就大大超过了高速公路的通行能力,于是高速公路就变成了带状停车场。

首先要清楚5G的先进性体现在哪里?可以简单用三个词概括:更高、更快、更强,能够体会出来浓浓的奥林匹克精神。没错,这是5G显著优于4G的特点。能达到峰值10Gbps以上,现实生活中就是如果我们用4G下载一部电影可能需要几分钟,而5G就可以在瞬间——几秒钟能够完成。所以对于更高更快来说是更上层楼的。

定向发射也有一个问题,就是人们在使用智能手机时的场景可能是不断变动的,特别是在乘坐交通工具时。以前由于是全向发射,所以手机位置变动也都能覆盖,而定向发射时,信号波束必须随着传输对象的位置变化不断做调整,这个难度可就很大了。而高通则采用了波束导向技术,更智能地追踪传输对象,控制波束的方向。高通做的第二件事是通过模组的方式尽可能缩小天线的尺寸,让一个调制解调器配备多个天线模组。这次推出的射频模组尺寸非常缩小,设想是在手机的4个边立面上配备4个毫米波天线模组,以配合5G调制解调器芯片,这样,寸土寸金的智能手机空间里,可以解决天线的空间被挤压导致性能受限的问题。

毫米波其实并非是新技术,早在很久之前就出现了,只是没有被广泛应用。因为其在通讯中受到环境因素的很大制约。由于其波长较短,因此衍射能力不强,对于建筑物的穿透力几乎等于没有,稍有障碍物就会导致信号传播受阻。空气中的水分子也能够吸收毫米波,造成其能量的衰减,传播范围极为有限。甚至是人体本身也会对毫米波产生致命的干扰,人手就能够完全阻断毫米波信号。

如果说之前的网络是对谁都一样的「中央空调」的话,那么毫米波这个波束赋型技术就是「专属暖男」。

声明:本文系《洞悉——物联网发展1000问》系列文章第七十四篇,旨在希望通过系统性与行业专业视角就物联网产业当前发展现状与经济潜力予以分析和分享。IOT物联网,万物互联,互联万物。作者:王正伟 中关村物联网产业联盟秘书长

高通本次发布全球首款5G射频模组就包含针对毫米波频段的集成方案,这说明高通对于毫米波的研究已经有深厚基础。早在去年10月,高通就宣布骁龙X50 5G调制解调器芯片组在28GHz毫米波频段上实现了5G数据连接。

载波聚合技术也能够提高带宽,它能够将多个载波整合在一起,来实现更高的系统带宽。但是载波聚合的使用也是受到频谱资源的限制的,在目前的4G LTE频谱资源上,频谱资源十分稀缺,国内频谱资源最丰富的中国移动也只有130MHz的频谱资源。相比较之下,毫米波的频谱资源十分丰富,能够被分配给运营商的频段极为广阔,甚至可以分配出诸多连续的优质频段。

在电影《那些年,我们一起追过的女孩》里面,台湾新竹发生地震,震后大家都一起打电话,结果都打不出去,当然也接不到电话。于是男主柯景腾的宅男室友一语道出其中的道理:

奥门银河官方app 4

另一方面,针对全球运营商对5G频段部署的多样性,在进行毫米波测试的同时,高通也积极推进6GHz以下的5G连接技术研发,也通过很多真实网络模拟实验,展示了基于6GHz以下及毫米波频段的5G网络能够为用户带来的出色体验,其中就包括在旧金山进行的模拟毫米波真实网络实验,下载速率从71Mbps提升到了1.4Gbps。首个5G射频模组,玄机在哪?

无论是毫米波、Sub-6GHz,都是5G不可或缺的一部分。毫米波作为其中技术难度最高的,或许在5G初期不太被重视,但缺了毫米波的5G,借用一句现在的流行用语,那就是没有灵魂的5G了。

不能改变信号问题

毫米波主要缺点就是不容易穿过建筑物或者障碍物,并且可以被植物叶子和雨水吸收。这也是为什么 5G网络将会采用小基站的方式来加强传统的蜂窝塔。由于毫米波的频率很高,波长很短,这就意味着其天线尺寸可以做得很小,这是部署小基站的基础。可以预见的是,未来 5G移动通信将不再依赖大型基站的布建架构,大量的小型基站将成为新的趋势,它可以覆盖大基站无法触及的末梢通信。

简单说,就是高通将多个小面积的天线模组放到手机终端里面,以克服毫米波很多与生俱来的缺陷。

想要将全部的货物运送到另一端,我们可以加大卡车的容量,让其可以一次运送更多的货物,从而在在卡车速度被固定的情况下(电磁波传输速度固定为光速),在更短的时间内将货物运送完毕。简单来说就是提高通讯电磁波中可以承载的数据量,来提高通讯效率,来加快网络速率。

为什么 2G 时代没有这个技术呢?这个前面也说了,2G 时候信号波长太长,天线也需要很长,那么搞 MIMO 技术的话,手机天线就要很多根,于是手机就变成四脚兽或者八爪鱼。

中国电信获得3400MHz-3500MHz共100MHz带宽的5G频率资源; 中国移动获得2515MHz-2675MHz、4800MHz-4900MHz频段的5G频率资源。其中,2515-2575MHz、2635-2675MHz和4800-4900MHz频段为新增频段,2575-2635MHz频段为重耕中国移动现有的TD-LTE频段;中国联通获得3500MHz-3600MHz共100MHz带宽的5G频率资源。而针对FR2频段的24.25GHz——52.6GHz,也就是我们这里所说的毫米波其实还没有真正开始。

首先,放弃了全向发射,而是通过多个天线实现定向发射。高通利用多个天线形成相控天线阵列,让天线之间的信号经过互相干涉影响,把信号能量集中在一个方向发射出去。

QTM,525实际上已经是高通的第二代5G毫米波天线模组。早在去年7月,高通就发布了首代毫米波模组QTM052,与骁龙X50调制解调器配合为全球首批5G手机提供毫米波支持。鉴于今年上市的5G手机绝大部分都将采用骁龙855移动平台+骁龙X50的组合,对于其中数家厂商推出的支持毫米波的5G手机终端而言,毫米波不再是难题,只待运营商的网络建成后,用户即可体验到毫米波所带来的疾速体验。

这个时候,经历了战争、死亡以及爱情洗礼,进化了数百万年的人类已经学会拉黑微信好友,使用移动电源,但是面对网络问题时,他们即便变换各种姿势,把手机亲亲抱抱举高高也还是

有的时候,很多技术发展和商业过程需要分步实现的。准确说,我们现在是5G第一阶段。当然除了速率高,毫米波还有不少其他的好处。首先是,毫米波的波束很窄,相同天线尺寸要比微波更窄,所以具有良好的方向性,能分辨相距更近的小目标或更为清晰地观察目标的细节。毫米波还有一个特点,就是传输质量高。这主要是由于它的频率非常高,所以毫米波通信基本上没有什么干扰源,电磁频谱极为干净,信道非常稳定可靠。另外毫米波的安全性也比较高,因为毫米波在大气中传播受氧、水气和降雨的吸收衰减很大,点对点的直通距离很短,超过距离信号就会很微弱,这增加了被窃听和干扰的难度。刚才说到毫米波波束窄,副瓣低,这也让它很难被截获。

了解了毫米波的重要性,我们就可以看看这次高通发布的5G射频模组,它包含两个主要模组:

在手机终端中接收与发射毫米波,同样是需要解决的难题。毫米波的波长短,相应所需要的天线长度也要短,可以减少手机内部的天线占用空间,这是毫米波的优势。不过毫米波在手机终端的使用上,也面临着射频发射、天线、放大、接收等全方面的设计难题。

不过也不用太担心,至少工信部已经在上个月发话,发布了《2019 年全国无线电管理工作要点》。其中,特别提到要适时发布 5G 系统部分毫米波频段频率使用规划,引导 5G 系统毫米波产业发展。

5G的商用仅仅是拉开了大幕,后面还有大量技术难题去逐步攻克,像Massive MIMO天线技术、以及波束成形技术等方面都需要通过实践去检验。对于普通用户只要了解清楚毫米波技术的大体情况就可以了,未来没准在选购5G手机的时候,也许有销售人员忽悠说“这是毫米波技术的5G手机”,你就明白是咋回事了。未来将是物联世界,让我们相约2019年11月19-21日,相约2019全球物联网大会—寻找思考者!

这两者中的重点和难点,应该是QTM052毫米波天线模组。我们知道毫米波虽然有带宽大,速率高的优势,但是也存在缺陷,就是传输性能比较差。

毫米波单载波就能达到100MHz带宽

到了 5G 时代,因为毫米波信号容易衰减和被阻挡的原因,基站的覆盖半径可能就剩几十米了,所以相比于 2G、3G 和 4G 时代,覆盖相同面积的基站数量就要多很多。同时,因为覆盖面积需求小了,5G 毫米波基站也不需要建那么高大威猛,小身材也能有大能量,这就是小基站。

这确实是需要多种高新技术突破才能实现的,而且并非简单在某个领域才行。5G中最关键的核心技术包括毫米波、小基站、Massive MIMO、全双工以及波束成形等方面,其中毫米波技术就是最重要的事情。在无线通信中增加传输速率一般有两种方法,一是增加频谱利用率,二是增加频谱带宽。频谱利用率就是调制的算法技术,比如在编码方面现在华为的编码方案就作为5G的一个重要标准。而相对于提高频谱利用率,增加频谱带宽的方法显得更简单直接。在频谱利用率不变的情况下,可用带宽翻倍则可以实现的数据传输速率也翻倍。但问题是,现在常用的5GHz以下的频段已经非常拥挤,到哪里去找新的频谱资源呢?

当然,5G新空口毫米波及6GHz以下射频模组既然已经发布,那么接下来的重点自然就是它的应用了。高通也考虑到了这一层。

另一种方式则是提高车道,让能够同行的卡车数量增加,这也就是提高带宽,来实现更快的网络速率。这其实也不难理解,车道越多,单位时间内通行的卡车数量也就越多,也就是单位时间内能够接收到的数据越多,反应在网速上无疑就是更快的速度了。

负责制定 5G 网络标准的 3GPP 组织之前开会规定,5G NR 主要使用两段频率:FR1 频段和 FR2 频段。FR1 频段的频率范围是 450MHz——6GHz,又叫 sub 6GHz 频段;FR2 频段的频率范围是 24.25GHz——52.6GHz,也就是 5G 领域里面的毫米波。

毫米波可以极大提升无线通信传输速率,这已经足够诱人,并且还有这些附带的优势,那么为什么这么多年一直没有被商用在通信领域中呢?这是因为,毫米波也有一些天然的缺陷,所谓硬币的两面,同样的特性,有优势,也有不足,这些不足很多年来令人们对毫米波的商用“望洋兴叹”。

正是基于这些技术创新手段,毫米波的5G射频模组才能诞生并应用于智能终端中,而这背后显然离不开高通所做出的努力。

好在目前在手机终端的毫米波使用上,也有了完备的解决方案。这其中以高通的方案最具代表性,其所打造的新一代毫米波天线模组QTM525,集成了毫米波传输中的天线、信号收发、放大等一系列功能,将这些功能集合在了一个十分“袖珍”的模组之中。手机终端只要运用该模组,就能够直接解决毫米波通讯的问题。QTM525毫米波天线模组,能够在一部手机中部署四个,全方位覆盖手机的四边,让用户无论是橫置还是单手握持,总能够保证有一组天线的通畅,确保毫米波通讯的可靠。

在和氧气的争宠中,60GHz 毫米波败下阵来,而 28GHz、38GHz 与 73GHz 情况就好多了,这也正是目前一些运营商将 28GHz 定为主要测试对象的原因。不过它们将迎接下一轮的挑战:湿度。

奥门银河官方app 5

一是信号容易衰减,传不远,二是容易被楼宇等物体阻挡,三就是受空间环境影响比较大,例如能量容易被水分子吸收,下雨等场景下容易衰弱。这些缺陷令毫米波一直很难商用,甚至有声音认为毫米波不可能大规模商用。

奥门银河官方app 6

据不完全统计,但看起来很有公信力的一个调查结果,人们在手机上最怕看到的三样东西分别是:多年未联系的微信好友发来的「在吗?」,使用年限超过两年的手机显示「电池电量低,请充电」和网络不好的时候屏幕上转动的「菊花」。

那这么高的速度到底是怎么才能实现呢?

高通表示,两款模组配合骁龙X50 5G调制解调器,这一解决方案正使移动5G网络和终端——尤其是智能手机准备就绪,为实现大规模商用提供支持。

5G手机的纤薄性不是问题

接着就是第二招:Massive MIMO(大规模多入多出技术)。

今天做个简单的科普。

不过,高通已经克服了这些问题,并现已经发布了产品。这其中经历了攻坚克难的历程:

毫米波是5G不可或缺的部分

解决毫米波先天缺陷的方法逻辑和上面说的 Mesh 网状网络有异曲同工之妙。

比如我们看6月6号的5G牌照颁发的时候,有一个很重要的信息就是公布了四家运营商的运营频点范围。目前国内的5G商用主要集中在sub6GHz,这些频段将是运营商未来很长一段时间的耕耘重点。

其一是QTM052毫米波天线模组,包含了从收发器到所有射频前端的器件,还有电源管理IC以及天线本身,但“身型”很小,覆盖的频谱也是比较主流的毫米波频段、是第一批商用的频谱。之后会根据后续推出的频段进一步提供产品。

5G能够有着数倍乃至数十倍4G LTE的网络速度,离不开背后所使用的各种新技术与新标准,毫米波技术的使用无疑就是其中的最关键一环。

接着就是骁龙 X55 基带的发布,同样也是 2G、3G、4G 和 5G 都支持,在毫米波频段下可实现最高达 7Gbps 的下载速度。很明显,骁龙 X55 基带和 QTM525 5G 毫米波天线模组又是一对。

根据通信原理,无线通信的最大信号带宽大约是载波频率的 5%左右,因此载波频率越高,可实现的信号带宽也越大。在毫米波频段中,28GHz 频段和 60GHz 频段是最有希望使用在 5G的两个频段。28GHz频段的可用频谱带宽可达1GHz,而 60GHz 频段每个信道的可用信号带宽则到了 2GHz(整个 9GHz的可用频谱分成了四个信道)。在3GPP 38.101协议的规定中,5GNR主要使用两段频率:FR1频段和FR2频段。FR1频段的频率范围是450MHz—6GHz,又叫Sub 6GHz频段;FR2频段的频率范围是24.25GHz——52.6GHz,也就是我们这里所说的毫米波。

5G手机,万事俱备,只欠东风

5G网络是一个复杂的网络环境,毫米波是最为闭环中处于圆心周围的最核心体验,它所呈现的是极限的速度,但是网络信号的覆盖范围有所局限;Sub-6GHz频段兼顾了速度与信号覆盖范围,有着均衡的表现;除此之外,千兆级LTE网络在5G环境中也是不可或缺的,它有着最优秀的信号覆盖,能够在5G信号覆盖不到的地方,保证用户不出现断崖式的糟糕体验。

到了手机制造商这边,光有个基带芯片还不够,还需要有天线模块。于是在 2018 年 7 月份,高通接着发布了全球首款面向移动终端的毫米波 5G 天线模块 QTM052,包含了从收发器到所有射频前端的器件,还有电源管理 IC 以及天线本身,覆盖第一批会投入商用的 5G 毫米波频谱。

目前,各大厂商对 5G 频段使用的规划,是在户外开阔地带使用较传统的 6GHz以下频段以保证信号覆盖率,而在室内则使用微型基站加上毫米波技术实现超高速数据传输。凭借毫米波和其他 5G 技术,运营商希望5G 网络不仅能够为智能手机用户提供服务,而且能够在无人驾驶汽车、VR以及物联网等领域发挥重要作用。

高通本次发布的是包含5G NR毫米波和6GHz以下的射频模组。我们知道无线通信需要在某一具体频段上传输信息,5G的三大业务场景(增强型移动宽带、关键业务控制和海量物联网)覆盖的范围更广,需要更宽更高的频谱,也就是更快的传输速率。而在通信行业,目前主流的提升速率的方法是增加频谱的带宽,但是目前常用的6GHz以下的频段已经基本被占用了,因此人们想到了毫米波技术。

对于毫米波应用的技术方案,现在的通讯行业有了成熟的解决方案。4G信号的传输,是属于区域覆盖,类似于水波纹,没有十分精准的方向性。毫米波信号的传输,则可以看做是点对点的动态传输,它能够精准的识别基站与手机之间的位置和距离,将毫米波信号集中在一起,形成一道高能量的波束,再运用波束追踪技术直接进行定向传输。这种传输方式的能量集中,具有较好的抗干扰性,完美的弥补了毫米波先天性的不足之处,使其能够支持商用环境。

这里可以做个比方,高速公路就是基站,车辆就是数据,需要传输的数据太多,基站就忙不过来堵住了。

其二是QPM56xx,针对6GHz以下频率设计,中国、欧洲、日本、韩国、澳大利亚等地都是使用6GHz以下频段做第一波5G手机比较热门的国家和区域。QPM56xx的出现对中国的5G商用意义重大,它包括4个产品:QPM5650、QPM5651、QDM5650和QDM5652。其中QPM5650和QPM5651中包括发送的功率放大器、接收的低噪声放大器,还有滤波器、天线开关等。

奥门银河官方app 7

也是正是由于毫米波的这些特点,使得工作在毫米波上的 5G 网络可以做很多 4G 网络做不了的事情,比如虚拟现实、增强现实、无线基站回程、短距离雷达探测、密集城区信息服务、体育场 / 音乐会 / 购物中心无线通信服务、工厂自动化控制、远程医疗、安全监控、智能交通系统、机场安全检查等等。

高通于7月23日宣布推出全球首款面向智能手机和其他移动终端的全集成5G新空口毫米波及6GHz以下射频模组,他们分别为QTM052毫米波天线模组和QPM 56xx 6Hz以下射频模组。

开头我们就已经明确了,毫米波是5G通讯中的一部分,是5G通讯中的两大主要频段之一,它所带给5G的不止是极快的网络速度,更是5G差异化体验的重要组成部分。

然后,根据着名的公式,光速 = 波长 × 频率。频率越高,波长也就越短。

6GHz以下的QPM56xx模组也是如此,考虑到5G中的一些新技术如信道探测参考信号切换,MIMO技术等的难度,所以高通将这些功能都集成在模组里,让手机厂商不用再花大量时间去集成、调试、优化,而是将这些面积、功耗、性能和成本都很难控制,研发投入周期也非常长的问题都解决好,为手机OEM厂商提供现成的解决方案。

网络通讯速度的根本,其实就是单位时间内所能接收到的数据多少。通讯基站与手机就好比两个物流站点之间进行货物的传输,货物就是需要传输的数据,连接两个站点之间的正是我们通讯所使用的电磁波,它就好比一条高速公路一般;相互之间的数据传输,则如同一辆辆卡车中的货物。

手机天线越来越短,一方面由于技术和工艺的进步,另一方面是由于波长越短,接收信号的天线也可以不用那么长。

而5G智能手机大规模上市后,5G时代的到来还会远吗?

毫米波究竟是个什么东西?其实我们翻翻高中物理课本就能清楚,其本质上就是一种高频电磁波,它是波长1-10毫米的电磁波,通常来说就是频率在30GHz-300GHz之间的电磁波。是5G通讯中所使用的主要频段之一。

到了今年 MWC 期间,5G 的进程进一步加快,小米、一加、OPPO、、中兴、索尼、LG、三星等等手机厂商都展出了旗下基于骁龙 855 和 X50 调制解调器的首款 5G 手机。

这次高通推出的5G射频模组可谓关键成果,如果大家了解高通以及整个行业在5G方面的布局进展,就会了解5G正在按部就班地向前推进。那么这次的成果又有什么具体意义呢?容IT之家和大家慢慢道来。

奥门银河官方app 8

电工电气网】讯

毫米波使用也有难度

负责给手机传数据信号的基站,自身有覆盖的范围,以及承载的数据传输能力。一旦基站覆盖范围内用户急剧增多,大家一起发消息,尤其是在演唱会里面,发的大多还是视频消息,这就会大大超过基站的数据传输能力。

毫米波的波长在1-10mm,而频率约为30GHz-300GHz,其中比较主流的频段是28GHz或更高频段,它对应的频谱带宽也是1GHz起,而4G-LTE可用的频谱带宽只有100MHz,带宽相当于4G的10倍,自然能够大大提高传输速率。另一方面,5G将提供更高级别的效率和能力,支持用户体验吞吐量提升十倍、端到端时延降低十倍、连接密度提升十倍,以支持更多的终端数量。这背后毫米波技术的重要性不言而喻。

​5G手机即将在今年广泛推出,工信部方面已经表示,在下半年会在一些地区开展5G试商用,5G手机也会在这个时间后逐渐发布。5G网络会带来众多全新的体验,对于我们大众用户来说,5G最能够吸引我们的元素,还得说是是超越4G数倍的网络速度了。

前面讲 4G 的时候就已经提到了这个技术,4G 时代的 MIMO 技术主要是 2×2 MIMO 或者 4×4 MIMO,数字代表天线数量,意思就是多根天线同时发送和接收信号。

同时毫米波的频率高波长短,而波长又和天线呈正比关系,所以天线可以做得很小,即便采用多个天线也不必担心整体模组尺寸会变大。

5G通讯中主要使用两个通讯频段,Sub-6GHz为低频频段,它主要使用6GHz以下频段进行通讯。毫米波频段则使用24GHz-100GHz的高频毫米波进行通讯。目前5G对于毫米波的利用,大多集中在24GHz/28GHz/39GHz/60GHz几个频段之中。

家里有大别墅的读者在家里可能有组装 Mesh 网状 Wi-Fi 网络的经验,因为 Wi-Fi 的覆盖范围有限,尤其是 5GHz Wi-Fi,一个路由器根本覆盖不了大别墅。所以 Mesh 网状网络就是在别墅里设置多个网络节点,每个节点覆盖家里的一部分,最终覆盖整个别墅。

其实高通采用这种高度集成的解决方案,目的也只有一个,就是尽可能简化OEM厂商的调试优化工作,省下时间和技术成本,帮助他们尽可能快地开发出真正可用的5G终端设备,推进5G终端的商用。毕竟,从现在到2019年底,商用节点已经迫在眉睫。

比如目前使用的256-QAM就是基于这样的原理来提高网络速率的,但这种做法具有一定的局限性。它并非能够无限制的提升效率,这种方法一是会造成射频信号的功耗增加,另一方面也会让其更容易受到噪声的干扰,造成解码时的错误。换成卡车的概念则更容易理解,一辆卡车的体积有限,你无论如何也不能将其打造成火车。

这是属于全球 50 多亿手机用户共同的无能为力。这种无能为力大多数情况是离散状态的,此刻他无能,他地你无力,只有一种时候,这种无能为力有着明显的集群状态:那就是大家一起看演唱会的时候。比如某年某月蔡徐坤在鸟巢开演唱会,会场里肯定满座,至少 9 万人,场外至少还得聚集买不到票的另外 9 万人,这 18 万人在准备发朋友圈的时候,就会发现手机转菊花,天涯共此时。

毫米波,5G的速率保障

毫米波的简单介绍到此为止。回到最初的问题,网络速度的提升跟毫米波有什么关系?这里我们不需要提及那些生涩难懂技术,只要举个例子分分钟就能理解。

后来天线不需要那么长,几毫米的长度完全可以集成在手机内部,还可以多做几根,于是才有 MIMO 的应用可能性。

带宽高、资源好、速度快,这就是毫米波的优势所在,也是5G为何要使用毫米波作为载体的根本原因所在。目前毫米波技术已经表现得比较成熟了,高通方面就曾经为我们进行了这方面的展示,其通过利用8个100MHz信道组成800MHz的高带宽,网络速率上已经接近5Gbps,比起Sub-6GHz的最高速率还有着成倍的提升。

于是,进击的毫米波使出第一招:小基站。

好了,接下来就是关于毫米波的问题了。通过以上的分析,我们不难得出结论,提高网络速率最简单粗暴的方式,就是加强带宽。根据通讯方面的原理,通讯信号频率与其最大带宽是呈正比的,其大概是频率的5%,以28GHz毫米波为例,其理论最大带宽就有1.4GHz,比起目前4G LTE所使用的800Mhz-2600MHz信号100Mhz左右的带宽相比,先天性就有着十倍以上的带宽差距。

因而,相较于 4G 网络的频率,5G 网络的频率再一次提高,频段基本上分为 6GHz 以下频段和毫米波两类。

如果说这个衰减还可以接受的话,毫米波最怕的还是暴雨,在特大暴雨天气下(降雨强度为 50 毫米 / 小时),毫米波传播损耗可达到 18.4dB/km,也是一公里外剩不下啥信号了。

然后就是第三招:波束赋型。

既然工信部爸爸都说要发展毫米波,那毫米波离我们也就不太远了。

正如 Wi-Fi 分为 2.4GHz 和 5GHz,以及还没有普及的 60GHz 一样,2.4GHz 非常能穿墙,我住 3 楼,把家里的 2.4GHz Wi-Fi 名字设成「804 室小姐姐加我微信 uncle-lau」,结果加到了 10 楼穿 Hollister 的小哥哥。

在以往,移动网络通过基站 360 度全向发射和接收信号,即便某一个方向没有人。

在此之前,5G 的参与者们就开始多年的实验和研发,2016 年,高通就发布了全球首款商用 5G 调制解调器——骁龙 X50 调制解调器,支持在 28GHz 频段毫米波频谱,下载速度最高可达 5Gbps。

5G 毫米波,有望成为「菊花杀手」

在以往的认知当中,基站都是一座座高高的铁塔,一个铁塔覆盖半径几公里的地方,在 2G 网络时代,确实是这样的。这种大铁塔,或者建在楼顶的小铁塔,叫宏基站。

可以这么说,从时间上来说,我们能体验到毫米波确实已经进入了倒计时。但是在空间上,毫米波离国人有点儿远,因为目前而言,我国部署 5G 网络还是集中在 Sub 6GHz 频段,北美则重点部署毫米波。

这里人太多,基地台超载,人少的地方搞不好才会通耶。

在今年 MWC 的高通展台,他们就和爱立信合作,把 5G 小基站放进了室内,这个基站同时支持 Sub 6GHz 和毫米波。

这个原因要从主观和客观两个原因来分析,人类主观层面,是因为之前没能攻破技术和成本两道难关。

这就是为什么 5G 毫米波可以解决掉在演唱会等巅峰时刻手机网络拥堵导致的转菊花问题的主要原因。

自然界给毫米波的磨难不小,接着,建筑物、甚至是人的身体,以及握持手机的手,都会不同程度地挡住毫米波信号。所以,在 5G 时代,对别人说「麻烦让一下,你挡住我的信号了」真不是开玩笑。

当然这个小秘密大多数人不会注意到,但是大家肯定会注意到,曾经好几万一部的大哥大天线能有十厘米长,然后到了翻盖手机时代,天线就剩拇指头那么长了。现在的小朋友估计都不知道手机天线长啥样了,因为全部都集成在机身内部了。

问题来着,前面说毫米波在 5G 里面强无敌,为什么不用呢?

Jagadish Chandra Bose

马上在 2 月份,高通又更新了产品:首先是 QTM525 5G 毫米波天线模组,通过降低模组高度可支持厚度不到 8 毫米的 5G 智能手机设计,并且还增加了更多的毫米波频段支持。

这个缺点主要表现在信号衰减大,易受阻挡和覆盖范围小。

之前 4G 网络就像高速公路,可以通过多修车道或者修多层车道(MIMO,多入多出)来提高通行能力。但是车道不可能无限加,所以决定了 4G 网络的局限性。

客观层面,作用于移动通信的时候,毫米波也有天然的缺点。

毫米波 5G 天线模块 QTM052 和骁龙 X50 调制解调器天生一对,搭配起来用的话,能实现前面说的波束成形、波束追踪等技术,也克服了手掌挡住信号的问题。

2019 年作为公认的 5G 元年不是没有道理的,预计今年内,消费者就能买到首批 5G 手机了。

毫米波看起来可以秒天秒地秒 4G,但是这个技术其实算起来已经一百多岁了。在清朝光绪年间,Jagadish Chandra Bose 这位物理学家就开始在实验室里研究毫米波了,这也是公认的毫米波技术的起源。

4G 网络通过可以使用的最大带宽是 100MHz,数据速率不超过 1Gbps(通过更高载波聚合,MIMO 技术还能再快一些)。在 28GHz 频段毫米波的可用频谱带宽可达 1GHz,数据速率高达 10Gbps,其他频段上的毫米波还可以更快。并且,相较于 4G 网络理论上 10ms 的延迟,5G 网络的延迟可以在 1ms 之内。

4G 网络做不了的事情,就留给 5G 来做。

当然,通过多建基站,提高单个基站的承载能力等等方式,可以一定程度上解决人口密集场所的网络问题。不过目前的 4G 网络依然是存在上限的,虽然 LTE 有载波聚合这样的技术,但是有些时候也会黯然销魂,载不动许多愁。基站的数据传输承载能力受制于代际技术的天花板,无法很好地解决掉演唱会这种特殊情况下的网络拥堵问题,爱的魔力依旧会转圈圈。

这么棒的技术,为什么之前没有用?

5G 毫米波相比于 4G 网络的带宽拓展,就像开放了空域,理论通行空间是十倍二十倍级别的增加。

奥门银河官方app,到了 5G 时代,因为波长更短了,天线也可以做更小,完全可以做好多个,形成天线阵列,基站那边也是同理,于是这些天线宝宝们一起活动,即便人类看不到,但场面想象一下依旧非常壮观,这就是 Massive MIMO(大规模多入多出技术),它能有效的提高网络传输效率,补偿信号衰减。

有心的话,就会发现,从 2G 网络到 4G 网络,大的趋势是,频段频率越来越高。以移动 2G GSM 网络为例,其频率集中在 900MHz 左右,而到了移动 4G 网络,频率又集中在了 2500MHz 左右。

和 Wi-Fi 有些类似的是,想要获得更快的速度和更高的带宽,那就把频率提上去,也就是我们常说的「只要网络频率足够快,那么菊花就追不上我」。

目前来看,首批推出 5G 手机的厂商几乎都是用了高通的方案。从另一个角度来看,从骁龙 X50 到 X55 两代 5G 调制解调器,高通也是市场上唯一一家能够面向智能手机提供商用毫米波解决方案的厂商。

在高温和高湿度环境下,其信号在 1 公里内可衰减一半。

波束赋型技术的优点在于提高了功率和效率,又扩大了覆盖范围,同时增强了安全性,降低了信号被截听的概率。

综上,相比于 4G 网络,5G 毫米波就是咏春叶问,一个打十个。

告别「菊花」倒计时

前面说了三千多字都是虚的,技术再强不落地,对于用户来说是放屁。

而在 5G 毫米波上使用的高增益天线同时具有较好的方向性,通过调整,能够把信号,也就是无线电波对准需要移动网络的手机。同时机变它也变,手机动了,无线电波也会换方向继续对准,信号被挡了还可以瞬间切换无线电波,这就是波束赋型和波束追踪。

不光是建筑物会阻挡毫米波,包括氧气、和雨滴都是毫米波传播的敌人。比如 60GHz 必须承受约 20dB/km 的氧气吸收损耗,这意味着一公里外,60GHz 的信号衰减到只剩不到 1%。

本文由奥门银河官方app发布于银河游戏平台网址,转载请注明出处:洞悉物联网发展一千问之到底5G的核心技术在哪里

相关阅读